2021年,工信部將碳基材料納入“十四五”原材料工業相關發展規劃,并將碳化硅復合材料、碳基復合材料等納入“十四五”產業科技創新相關發展規劃,以全面突破關鍵核心技術,攻克“卡脖子”品種,提高碳基新材料產品質量,推進產業基礎高級化、產業鏈現代化。碳基復合材料設計,是一項專門的技術。國際上認為培養一個成熟的復合材料設計師至少需要10年,國內嚴重缺乏有經驗的相關設計人員,大部分人不了解材料強度、剛度計算的工程方法,國際上通行的分析和驗證用的“積木式”(BBA-Building Block Approach)方法,很少有人具體掌握復合材料連接設計、疲勞耐久性設計、損傷容限設計、穩定性設計、環境影響及其防護設計、修理設計等許多具體設計技術和要領。
碳基復合材料面臨“卡脖子”
目前我國亟待攻克的“卡脖子”品種有三大類:一是碳纖維及其制品,如高性能聚丙烯腈基碳纖維、瀝青基碳纖維、黏膠基碳纖維、碳纖維預浸料、復合材料和碳紙等;二是特種石墨,如機械密封用石墨、抗燒蝕石墨、核石墨和高導熱泡沫石墨等;三是功能炭材料,如中間相碳微球、電容炭、硬炭、硅炭、石墨烯導熱膜和導電炭黑等。中國科學院炭材料重點實驗室副主任陳成猛表示,我國碳基材料行業與發達國家相比仍然存在一定差距。在基礎炭材料領域,高精尖品種大量依賴進口,仍面臨“卡脖子”風險,亟須提高自主創新能力,加強科技攻關。在前沿炭材料領域,我國處于與國際并行乃至領跑狀態,相關產業正加速崛起,“如何在低成本大規模制備的基礎上,開拓應用場景,推進產業化,對于搶占新興產業制高點具有重要戰略意義”。
碳纖維復合材料相關技術的國際化差距
碳基新材料高端產品仍處于產業化初始階段,高強高模碳纖維、聚酰胺66等產品仍面臨國際貿易和技術壁壘。此外,關鍵制造裝備也處于以引進為主、研制和仿制為輔的狀態,高端分析測試設備更是基本依賴進口,具有工匠精神的專業工程技術人才出現斷層。
碳纖維樹脂基復合材料制造工藝裝備落后,自動化程度低,大規模工業化生產成套工藝與裝備研發能力不足。國內碳纖維樹脂基復合材料結構應用以跟蹤替代為主,自主設計應用能力較弱,自動化成型工藝的應用比例不足20%。復合材料設計和工藝技術落后使復合材料性能離散大、減重效率和成品率低、成本高,已經成為制約復合材料應用的突出問題。
近幾年,我國在碳纖維原絲的生產方面取得了較大的進步,但是與國際先進技術水平之間的差距還是很明顯的。例如,美日的碳纖維龍頭企業所采用的干噴濕紡工藝,在國內尚未真正普及,僅中復神鷹在干噴濕紡工藝上取得了千噸級的突破。美日的原絲生產已經能達到T1100高強度碳纖維和M60J高模量這種水平,而國產碳纖維企業的產品還集中在T300、T400這類中低端產品上,能夠批量化生產達到T700水平的比例并不多。
國內碳纖維樹脂基復合材料應用水平與發達國家也存在明顯的差距。國外研制的B787、A350等大型客機復合材料用量達到了50%以上。國內研制的ARJ21支線客機復合材料用量不足2%,正在研制的C919復合材料用量僅達10%左右,且大部分構件主要直接從國外進口預浸料制造生產,樹脂基復合材料在大型客機等民用航空領域難以形成規模。
碳基復合材料研發設計環節最為薄弱,已嚴重制約我國先進復合材料應用的發展。國際上認為培養一個成熟的復合材料設計師至少需要10年,國內嚴重缺乏有經驗的設計人員,這直接普遍影響到復合材料的應用發展。例如國內很少有人真正掌握鋪層設計的原則和方法,不了解材料許用值和結構設計值的來源及用法,不知道復合材料強度、剛度計算的工程方法,不了解國際上通行的分析和驗證用的“積木式”(BBA-Building Block Approach)方法,沒有具體掌握復合材料連接設計、疲勞耐久性設計、損傷容限設計、穩定性設計、環境影響及其防護設計、修理設計等許多具體設計技術和要領。
設計方面還存在規范手冊和軟件開發等問題。國外十分重視有組織的制訂相應規范,例如各大飛機公司均有自己的《復合材料設計手冊》,至于專門用于復合材料設計分析軟件的Sizer等軟件的開發和應用等。在應用領域,如風機葉片的設計,國外已大量應用先進復合材料,成為碳纖維應用大戶,但國內進展緩慢,一個重要原因是我國葉片多是進口,沒有原始設計產權,自主設計時也沒有引進商提供的載荷數據作為參考。
碳基復合材料成本較高,是制約其擴大應用發展的主要障礙之一。西方發達國家紛紛制訂低成本的復合材料發展計劃,發展低成本的復合材料綜合技術,如美國由國防部出面聯合工業界于1996年發起并執行一個10年的低成本復合材料計劃,即CAI(Composite Afforability Initiative)計劃,并已用在F-35和B787等機型的工程應用中,宣稱要降低總成本的50%。歐洲則繼TANGO計劃后又有ASK計劃等,目的要減輕結構重量的30%,節省成本的30%,由多國多部門聯合執行。
碳纖維中低端產品成本居高不下,缺乏國際競爭力。國產碳纖維高端產品缺乏,T300/T700級碳纖維滿足國防應用需求,T800、M40、M40J和M55J已突破工程化制備技術,更高性能的T1100G碳纖維、TORAYCAM40X碳纖維還處于跟蹤研發階段;宇航級T300、T700級國產碳纖維價格國外在1000元人民幣/kg以內,國內在3000-4000元人民幣/kg,缺乏國際競爭力,因此真正具有競爭力和可持續健康發展的碳纖維龍頭產業尚未形成。
最后,創新是技術發展的靈魂,事關國民經濟發展的命脈,但在碳基復合材料技術領域原創創新能力不足。要能不斷開發出新的有競爭力的適銷對路的產品投放市場獲取效益,以碳纖維復合材料自行車為例,2020年,全球碳纖維自行車市場規模達到183百萬美元,預計2026年可以達到229百萬美元,從車架、車把、車叉、座管到曲柄最后到車圈中國臺灣用27年完成復合材料化的進程,技術含量很高,市場占有率全球領先。
高性能石墨材料技術被國外嚴格封鎖
在全球市場中,碳基復合材料生產企業主要集中在日本、西歐、美國等地區,代表性企業主要有日本東洋碳素、日本東海、日本東麗、日本碳素、日本吳羽化學、德國西格里、德國崇德、法國美爾森、美國尤卡、美國赫氏復材、美國GrafTech等。這些企業技術水平先進,能夠生產的產品種類較多、質量較高,在全球市場中處于領先地位。
一直以來,歐美日等國家在高性能石墨材料技術方面對我國實行嚴格封鎖,出口到國內市場的產品種類與數量也進行嚴格控制,導致我國高性能石墨材料價格高昂且供應量少,無法滿足高技術產業發展需求。發展碳基復合材料行業是緩解我國高性能石墨材料供應不足的重要手段之一,在國家政策與資本的推動下,我國碳基復合材料行業不斷發展壯大。
根據新思界產業研究中心發布的《2020-2024年碳/碳復合材料行業深度市場調研及投資策略建議報告》顯示,現階段,我國代表性企業主要有南方搏云新材、煙臺魯航、甘肅郝氏、西安超碼、湖南博云新材、吉林聯科、北京金鑫等。相關生產企業數量不斷增長,能夠生產的產品種類不斷增多,在一定程度上緩解了我國高性能石墨材料供應不足的問題,也使得相關產品進口價格有所下降。
碳基芯片如何實現彎道超車
缺芯成為科技界的一大難題,之前的芯片絕大部分采用硅基材料的集成電路技術,最新的碳基半導體具有成本更低、功耗更小、效率更高的優勢,碳基技術是各國一直研發替代硅基的新技術。與國外硅基技術制造出來的芯片相比,我國碳基技術制造出來的芯片在處理大數據時,不僅速度更快,而且至少節約30%的功耗。碳基技術在不久的將來可以應用于國防科技、衛星導航、氣象監測、人工智能、醫療器械等多重領域。已在高端汽車剎車系統取得了一定的應用,未來有望成為新一代飛機、高鐵和汽車剎車材料。
目前我國已經實現四項技術突破:第一,提純原料。第二,將碳納米管有規則地平鋪在基板上。第三,使用碳納米管搭建pn結構。第四,將dna完成的組裝體規則地搭建在基板上。雖然已經能夠以很高的密度按規則鋪設碳納米管,但想要做成電路,還需光刻/電子束刻蝕來鋪設各種電極(源電極、漏電極、門電極)。硅基芯片發展幾十年,很多核心技術掌握在歐美等國家的手里,因此會受制于人。當下的技術能力距離實現真正可以使用的碳基芯片還有一段距離要走,要實現工業生產更是前路漫漫。
政策助推碳基復合材料發展
附:碳基材料分類
碳基材料是指以碳為基體的材料,主要包括高性能碳基復合材料、纖維增強復合材料、石墨及石墨烯材料。碳基材料具有比重小、強度高等優異性能,廣泛應用于航天、航空、核能、光伏、風電、電子信息、冶金機械、軌道交通裝備、工程機械等領域,是超高聲速飛行器、運載火箭、新一代戰機、核反應堆等重點領域不可缺少的關鍵材料。碳基復合材料的上游分為基體、增強體和其他材料,其中基體包括石墨碳和碳纖維,增強體則有碳化硅;中游包括碳/碳復合材料產品、碳/陶復合材料產品;下游應用在半導體、航天航空、汽車行業、光伏發電以及化工行業等。
按照維度劃分,碳基材料可分為零維、一維、二維和三維材料。其中,零維材料有碳量子點、富勒烯等;一維材料有碳纖維、碳納米管、碳納米線等;二維材料有石墨烯等;三維材料也稱體材料,包含各類立體的本征或復合體系。
來源:中國科技投資
此文由中國復合材料工業協會搜集自網絡,文章不用于商業目的,僅供行業人士交流,引用請注明出處。
表情